The first of the the training

Innortant Vote : I. On commissing regulations

			,	r	,	 		 		Sec. 14.2 .	
USN			İ	1					40	104	Tr Z 1
	12						İ		ò	IUA	E61

Sixth Semester B.E. Degree Examination, Dec.2017/Jan.2018

Applied Gas Dynamics

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.

2. Use of thermodynamics table and gas tables are allowed.

- a. Explain De-Laval nozzle. Derive an expression for area ratio as a function of Mach number 1 for a De-Laval nozzle.
 - b. A conical diffuser has entry and exit diameters of 15 cm and 30 cm respectively. The pressure, temperature and velocity of air at entry are 0.69 bar, 340 K and 180 m/s respectively. Determine: (i) exit pressure, (ii) exit velocity, (iii) force exerted on diffuser wall. Assume isentropic flow, r = 1.4, $c_p = 1 \text{ kJ/kgK}$.
- Derive Prandtl-Meyer relation for normal shock waves with usual notations. 2 (10 Marks)
 - A gas (r = 1.4, R = 0.287 kJ/kgK) at a Mach number of 1.8, P = 0.8 bar and T = 373 K passes through a normal shock. Determine its density after the shock. Compare this value in an isentropic compression through the same pressure ratio. Assume for normal shock tables for r = 1.4, at $M_x = 1.8$, $(P_y/P_x) = 3.613$, $(T_y/T_y) = 1.532$. (10 Marks)
- a. Draw a Fanno line and show that $h = h_0 \frac{1}{2} \left(\frac{G}{\rho} \right)^2$. 3 (10 Marks)
 - b. A circular duct passes 8.25 kg/s of air at an exit Mach number of 0.5. The entry pressure and temperature are 3.45 bar and 38°C respectively and the coefficient of friction 0.005. If the Mach number at entry is 0.15, determine:
 - i) The diameter of duct
 - ii) Length of duct
 - iii) Pressure and temperature at the exit
 - iv) Stagnation pressure loss
 - v) Verify the exit Mach number through exit velocity and temperature.

(10 Marks)

Define Rayleigh flow process and by a suitable graph, explain the Rayleigh curve and its significance and also show that at maximum entropy point, the flow is sonic analytically.

(10 Marks)

- b. The Mach number at the exit of a combustion chamber is 0.9. The ratio of stagnation temperatures at exit and entry is 3.74. If the pressure and temperature of the gas at exit are 2.5 bar and 1000 °C respectively, determine:
 - i) Mach number, pressure and temperature of the gas at entry
 - ii) Heat supplied per kg of the fluid
 - iii) Maximum heat that can be supplied.

Take r = 1.3 and $c_p = 1.218 \text{ kJ/kgK}$.

(10 Marks)

PART - B

5 a. Explain the small perturbation theory and show the linearization of the potential equation.

(10 Marks)

b. Derive an expression for linearized pressure coefficient.

(10 Marks)

6 a. Explain Prandtl-Glauert rule for a two dimensional subsonic flow.

(10 Marks)

b. Discuss the Von-Karman rule for transonic flow.

(10 Marks)

7 a. Explain the thin aerofoil theory and obtain an expression for the pressure distribution.

(10 Marks)

b. Discuss the typical aerodynamic characteristics of an aerofoil at low speeds.

(10 Marks)

8 a. Explain closed circuit supersonic tunnel with relevant sketch.

(10 Marks)

- b. Explain the following with suitable sketch:
 - i) Hot wire anemometer
 - ii) Mach Zender Inter ferometer.

(10 Marks)

* * * * *